3x^2+35x+14=0

Simple and best practice solution for 3x^2+35x+14=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+35x+14=0 equation:


Simplifying
3x2 + 35x + 14 = 0

Reorder the terms:
14 + 35x + 3x2 = 0

Solving
14 + 35x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
4.666666667 + 11.66666667x + x2 = 0

Move the constant term to the right:

Add '-4.666666667' to each side of the equation.
4.666666667 + 11.66666667x + -4.666666667 + x2 = 0 + -4.666666667

Reorder the terms:
4.666666667 + -4.666666667 + 11.66666667x + x2 = 0 + -4.666666667

Combine like terms: 4.666666667 + -4.666666667 = 0.000000000
0.000000000 + 11.66666667x + x2 = 0 + -4.666666667
11.66666667x + x2 = 0 + -4.666666667

Combine like terms: 0 + -4.666666667 = -4.666666667
11.66666667x + x2 = -4.666666667

The x term is 11.66666667x.  Take half its coefficient (5.833333335).
Square it (34.02777780) and add it to both sides.

Add '34.02777780' to each side of the equation.
11.66666667x + 34.02777780 + x2 = -4.666666667 + 34.02777780

Reorder the terms:
34.02777780 + 11.66666667x + x2 = -4.666666667 + 34.02777780

Combine like terms: -4.666666667 + 34.02777780 = 29.361111133
34.02777780 + 11.66666667x + x2 = 29.361111133

Factor a perfect square on the left side:
(x + 5.833333335)(x + 5.833333335) = 29.361111133

Calculate the square root of the right side: 5.418589404

Break this problem into two subproblems by setting 
(x + 5.833333335) equal to 5.418589404 and -5.418589404.

Subproblem 1

x + 5.833333335 = 5.418589404 Simplifying x + 5.833333335 = 5.418589404 Reorder the terms: 5.833333335 + x = 5.418589404 Solving 5.833333335 + x = 5.418589404 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = 5.418589404 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = 5.418589404 + -5.833333335 x = 5.418589404 + -5.833333335 Combine like terms: 5.418589404 + -5.833333335 = -0.414743931 x = -0.414743931 Simplifying x = -0.414743931

Subproblem 2

x + 5.833333335 = -5.418589404 Simplifying x + 5.833333335 = -5.418589404 Reorder the terms: 5.833333335 + x = -5.418589404 Solving 5.833333335 + x = -5.418589404 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = -5.418589404 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = -5.418589404 + -5.833333335 x = -5.418589404 + -5.833333335 Combine like terms: -5.418589404 + -5.833333335 = -11.251922739 x = -11.251922739 Simplifying x = -11.251922739

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.414743931, -11.251922739}

See similar equations:

| X/10-1/5=35 | | 2(8p-5)=4p | | 5=a/9-3 | | 2/3h-1/4=1/3 | | 2k-3(2k-3)=35 | | -3=1/4-45 | | 2(x+-2)=2(9+-2) | | -2(x+4)-9=-2x-17 | | x^4-4c^2=0 | | X+5(x+1)=4(2-x)+x | | ax-3b=8c | | X=33-(7-4x) | | 11+2x+11=x+17 | | 11+3y=11+3(-5) | | 7-(3-2x)=4x-6 | | 11+2x+11=x+11 | | -2b+7(4b-2)=-38+2b | | 11-3y=11-3(-5) | | 4x-16=7x+21 | | 270x^2+99x-30=0 | | 1-3v=-5v-5 | | -2+x=4x+9 | | 6+2(x-3)=3+x | | 2(5x-1)=8(x+11) | | 150+77+48= | | m-1=-8 | | G(x)=-1 | | H(x)=-5x+2 | | mp+mu=m | | -10+5r=-75 | | 2.49m=249cm | | 7x=8x-14 |

Equations solver categories